NAME:

1) Write verbal expressions of algebraic expressions
2) Write algebraic expressions for verbal expressions

DEFINITIONS

Algebraic Expressions

Variables

Terms

Factors

Product

Power

Exponent & Base

MORE TERMS

PRACTICE

Write verbal expressions for the following:

1. $2x$
2. $rac{2}{3}r^3$
3. The sum of a number and 12
4. 4 more than 10 times a number

Sister Mary Rebekah, O.P.
2016 Interactive Algebra 1 Notes
1) Use the order of operations to evaluate algebraic expression.
2) Use rules to evaluate expressions to use formulas.

NOTE-IT

P
Evaluate expressions inside of grouping symbols (aka __________).

E
Evaluate all the powers/______________

M
__________ from left to right

D
__________ from left to right

FORMULAS

1) Use the order of operations to evaluate algebraic expression.
2) Use rules to evaluate expressions to use formulas.

Try-It

EVALUATE EXPRESSIONS

EVALUATE FORMULAS

1.

2.

Area of a Circle

Volume of a Sphere
1) Identify the properties of equality and identity.
2) Recognize the commutative and associative properties.
3) Use these properties to evaluate expressions.

Properties of Numbers

Properties of Equality

- Reflexive Property
- Symmetric Property
- Transitive Property
- Substitution Property

Properties of Identity

- Additive Identity
- Additive Inverse
- Multiplicative Identity
- Multiplicative Inverse

Properties of Equality

- Reflexive Property
- Symmetric Property
- Transitive Property
- Substitution Property

Properties of Identity

- Additive Identity
- Additive Inverse
- Multiplicative Identity
- Multiplicative Inverse

Definition

Anything times zero = zero

\[a \times 0 = 0 \]

Sister Mary Rebekah, O.P.
2016 Interactive Algebra 1 Notes
NAME:
1) Identify the properties of equality and identity.
2) Recognize the commutative and associative properties.
3) Use these properties to evaluate expressions.

Properties of Identity

Commutative Property

Associative Property

Practice
1) Define the distributive property.
2) Use the distributive property to simplify & evaluate expressions.

Example #1
3 \((2+5) = 3 \cdot 2 + 3 \cdot 5 \)

Example #2
7 \((3w - 5) = 7 \cdot 3w + 7 \cdot (-5) \)

Try-It
Use the Distributive Property to rewrite the following expressions, then evaluate:

1. \(14 \ (51) \)
2. \((6 \ 1/9)9 \)
3. \((g-9)5 \)
4. \((4 + 5) \ 6 \)
5. \(14 \ (8 - 5) \)

Sister Mary Rebekah, O.P.
2016 Interactive Algebra 1 Notes
NAME:

1) Solve equations given a replacement set.
2) Solve equations with one variable.
3) Solve equations with two variable.

1-5 Equations

Expression
3x + 7

Equation
3x + 7 = 13

Example #1
Find the solution set of the equation 2q + 5 = 13 if the replacement set is {2, 3, 4, 5, 6}.

<table>
<thead>
<tr>
<th>q</th>
<th>2q + 5 = 13 True or False</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>True</td>
</tr>
<tr>
<td>3</td>
<td>True</td>
</tr>
<tr>
<td>4</td>
<td>True</td>
</tr>
<tr>
<td>5</td>
<td>True</td>
</tr>
<tr>
<td>6</td>
<td>True</td>
</tr>
</tbody>
</table>

Example #2
7 - (4^2 - 10) + n = 10

Example #3
n(3 + 2) + 6 = 5n + (10 - 3)

Example #4
Solve: 3^2 - 2\cdot 3 + u = (3^3 - 3\cdot 8)(2) + u

Example #5
Solve: (4 - 2^2 + 5w) = 25

Sister Mary Rebekah, O.P.
2016 Interactive Algebra 1 Notes
Represent a Relation

Coordinate System

A point is represented on a graph using coordinate pairs.
- Ordered pair
- X-coordinate
- Y-coordinate

Relation

Domain Range

- Mapping
- Domain
- Range
1) Represent Relations.
2) Interpret graphs of relations.

Faces of “Functions”

<table>
<thead>
<tr>
<th>Ordered Pairs</th>
<th>Table</th>
<th>Graph</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(y)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Independent Variable

Dependent Variable

Let’s analyze graphs of relations on pg. 401
NAME:

1) Determine whether a relation is a function.
2) Find function values.

A function is a relation with one or more input values, where each has a single output value.

functions
Each input is only allowed to correspond to ONE output!

This relation is a function because none of the input values (x-values) has more than one different output (y-value).

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

This relation is NOT a function because at least one of the input values (x-values) has more than one different output (y-value).

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>2</th>
<th>-3</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>5</td>
<td>-1</td>
<td>2</td>
<td>-2</td>
</tr>
</tbody>
</table>

notation
When dealing with functions, you will see ______ in place of y.

How to say it out loud: ______

evaluating
To evaluate a function for a particular x-value, just ______ and then simplify!

Example: If \(f(x) = 2x + 1 \), find \(f(3) \).
Work: \(f(3) = 2(3) + 1 \)
Answer: ______
determining whether a relation is a function

Add circles, arrows, lines, etc. to demonstrate why each relation is/isn’t a function.

table

Review the columns. The relation will not be a function if any ___________ corresponds to more than one different ___________.

<table>
<thead>
<tr>
<th>A</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

set-notation

Review each ordered pair. The relation will not be a function if any ___________ corresponds to more than one different ___________.

<table>
<thead>
<tr>
<th>C</th>
<th>(3, 3), (4, -1), (2, 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>(1, 8), (0, -2), (1, -3)</td>
</tr>
</tbody>
</table>

graph

Use the ___________. The relation will not be a function if a vertical line ever ___________.

<table>
<thead>
<tr>
<th>E</th>
<th>graph 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>graph 2</td>
</tr>
</tbody>
</table>

mappings-diagram

Review the arrows. The relation will not be a function if any ___________ maps to more than one different ___________.

<table>
<thead>
<tr>
<th>G</th>
<th>mapping diagram 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>mapping diagram 2</td>
</tr>
</tbody>
</table>

finding domain and range

The domain is the set of all possible ___________. The range is the set of all possible ___________.

Identify the domain and range of the relations in the “table,” “set notation,” and “graph” examples above.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

TRY it

Create a mapping diagram and a graph that each represent functions.
1) Identify the hypothesis and conclusion in a conditional statement.
2) Use a counter example to show that an assertion is false.

Conditional Statements

If a, then b.

Deductive Reasoning

The process of using rules, facts, definitions and properties to reach a valid conclusion.

Counter Examples

Counter examples are specific cases in which the hypothesis is true, but the conclusion is false.